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We study the nature and mechanisms of broken ergodicity (BE) in specific random walk models corre-
sponding to diffusion on random potential surfaces, in both one dimension and high dimension. Using
both rigorous results and nonrigorous methods, we confirm several aspects of the standard BE picture
and show that others apply in one dimension, but need to be modified in higher dimensions. These latter
aspects include the notions that a fixed temperature confining barriers increase logarithmically with
time, that “components” are necessarily bounded regions of state space which depend on the observa-
tional time scale, and that the system continually revisits previously traversed regions of state space. We
examine our results in the context of several experiments, and discuss some implications of our results
for the dynamics of disordered and/or complex systems.

PACS number(s): 05.90.+m

I. INTRODUCTION

When a system has many metastable states, it may be-
come trapped for long times in some subset of its total
state space, making it difficult to compare experimental
results with calculations based on the usual Gibbs formal-
ism. A viewpoint commonly called “broken ergodicity”
(BE) has evolved to serve as a qualitative guide for the
understanding of some of the dynamical and thermal
properties of these systems. This has been extremely use-
ful in several respects, but we are still hampered by the
lack of a real theory.

Much of the problem is the difficulty of characterizing
the nature of metastability in real systems. As a result,
the standard picture of BE that has emerged (to be de-
scribed below) is based largely on intuition and simple
pictures of what these state spaces may look like. All ba-
sically involve diffusion of a particle (the system) on a
rugged landscape, which may or may not possess correla-
tions. These pictures can all be described as diffusion in a
strongly inhomogeneous environment.

While many of the results obtained in this way are
compelling (and, as we will discuss below, almost certain-
ly correct in a wide variety of situations), progress has
been slow, at least partially because of the lack of specific
models to test these ideas on. In this paper, we will at-
tempt to do just that; we will examine some simple, well-
known models and see how broken ergodicity arises in
them. These models are representative of uncorrelated
random potentials. Reasoning based on random walks on
such potentials has guided much of the thinking about
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how BE operates in disordered systems [1]. We will not
address in this paper the question of the accuracy of such
assumptions; i.e., whether random walks on rugged
landscapes are useful for modeling dynamics of some
disordered systems. Our only goal here is to introduce
clear, well-defined models and to study their long-time
behavior in the strongly inhomogeneous limit.

The analysis will be based on some rigorous results ob-
tained in an earlier paper [2], hereafter referred to as I,
and some nonrigorous results obtained in another [3],
hereafter referred to as II. We will find that while many
of the central ideas of standard BE apply to these models,
there are some surprising deviations from important ele-
ments of the conventional picture. We will find that this
is at least partially due to the fact that while all workers
in the field recognize that the relevant state spaces for
physical systems are high dimensional, much of the intui-
tion about BE is nevertheless based on what are ultimate-
ly one-dimensional pictures. We will see explicitly how
the presence of many dimensions considerably changes
the standard analysis.

The paper is organized as follows: In Sec. II, we re-
view some of the basic features of BE pertinent to the
analysis contained below. In Sec. III, we introduce two
simple models of a random walk in a random environ-
ment (RWRE), and review our earlier results within the
context of these models. In Sec. IV, we analyze the
behavior of broken ergodicity in these models, in both
one and high dimensions. In Sec. V, we discuss and sum-
marize these results, and make a few brief remarks about
experiments.
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II. BROKEN ERGODICITY

Because the phenomenon of broken ergodicity has been
discussed at great length in the literature, we here review
only those aspects of it that are relevant for the cases un-
der consideration. The importance of nonergodicity in
disordered systems, particularly spin glasses, was em-
phasized early on by Anderson [4,5]. Early analyses and
applications were given by Jackle [6], Palmer [7,8], and
van Enter and van Hemmen [9]. The presentation by
Palmer is especially comprehensive and accessible; most
of the discussion in this section follows his treatment.
We are concerned here only with some of the central
ideas of BE; for a complete overview, we refer the reader
to the above papers.

We are primarily interested in cases where ergodicity is
broken because the observational time scale (7,) falls
within a continuum of relaxational or equilibrational time
scales intrinsic to the system, as is commonly believed to
occur for glasses and spin glasses. (See Refs. [7] and [9]
for other examples, including the more familiar situation
of broken symmetry.) This may occur either in the pres-
ence or absence of a phase transition. The former is typi-
cally indicated by the state space breaking up into two or
more disjoint components, separated by free energy bar-
riers that diverge in the thermodynamic limit. Broken
ergodicity can and does occur, however, when the system
possesses metastable states surrounded by finite free ener-
gy barriers. Because the typical time scale for escape
from a metastable state grows exponentially with the bar-
rier, these need not be large for ergodicity to be broken
on laboratory time scales.

The central idea is that state space can be decomposed
into components that are not necessarily intrinsic to the
system, but rather depend on the time scale. Com-
ponents are defined by the probability of confinement on
some time scale 7: if the system is in a given component
at time O, then the probability that it has not escaped
from the component by time 7 is greater than some
specified (fixed) probability p, [7]. Clearly, the definition
of the component depends both on the specified time
scale 7 and the probability p,. It is also assumed that on
the same time scale, the system is ergodic within the com-
ponent; i.e., the system visits a representative sampling of
states within the component so that the state space aver-
age equals the time average, so long as one confines the
averaging to states within the component [7].

What is the confinement mechanism? We are interest-
ed here in structural confinement mechanisms rather than
dynamical (i.e., the existence of possible constants of the
motion.) In the former case, the system is confined to a
component because the smallest free energy barrier that
must be surmounted in order to escape corresponds to an
escape time large compared to the observational time.
The standard picture envisions a very mountainous ter-
rain, with a series of isolated lakes and puddles in various
valleys. The “water level” corresponds to the largest free
energy scale that the system can sample on a given tem-
perature and time scale. If temperature is held fixed, and
time is allowed to increase, the water level steadily rises,
with lakes merging into bigger lakes into oceans, leading
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to a hierarchical merging of components [7,8,10—12]; see
Fig. 1. (One can arrive at the same picture by fixing time
t and letting temperature T increase; the height of the
water level scales as T Int.)

Until the system surmounts the highest barriers, ergo-
dicity remains broken; as soon as the system surmounts
some free energy barrier, it finds itself in a larger com-
ponent that is confined by higher free energy barriers
[7,8,11]. So the confining free energy barriers that the
system must surmount, at fixed temperature, increase log-
arithmically with the time. Also, because the system is
now ergodic within the larger component, it will continu-
ally revisit the previous smaller one, which is now a sub-
set of the portion of state space that it currently explores.

We will not examine these ansatze in two specific mod-
els, both of which possess a continuum of free energy
barriers—and, therefore, a continuum of relaxational
time scales. We will find that the above picture needs to
be modified in several respects: while it precisely de-
scribes a one-dimensional version of our models, there are
important differences in higher dimensions.

These high-dimensional models are indeed the relevant
ones, since within the context of BE one is usually refer-
ring to the evolution of a system in some high-
dimensional state space. As in I, one often models this
state space as some graph §. The vertices of the graph
correspond to the states themselves, and the edges corre-
spond to transitional paths between pairs of states. The
dimensionality of the graph scales with N, the number of
degrees of freedom in the system. We will follow this
general procedure here.

We begin with a description of our dynamical models,
which are just specific examples of a much studied

¢

FIG. 1. Standard picture of a “rugged potential.” The verti-
cal axis represents energy or free energy, depending on the con-
text, and the horizontal axis represents an ‘‘abstract
configurational coordinate” ®. At fixed temperature and time
scale denoted by A, the system can explore the region of
configuration space below the corresponding horizontal solid
line. At the same temperature but longer time scale (or the
same time scale but higher temperature), the system can explore
the region below the horizontal line B (which includes the previ-
ous region A). At a still longer time scale (or higher tempera-
ture) the system can explore the region below the line C, which
includes all of 4 and B. After Palmer, Ref. [8], Fig. 1, and Pal-
mer and Stein, Ref. [11], Fig. 3.
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process—the random walk in a random environment
[13-16].

III. INHOMOGENEOUS RANDOM WALK AS
INVASION PERCOLATION

In this section, we review the results of earlier work.
We consider two different dynamical models within the
overall context of the RWRE:

(1) Model A4 —*edge” model. Here we consider a
graph ¢ in which the sites correspond to states and the
(nondirected) edges to the dynamical pathways which
connect them. For specificity, we take & to be the lattice
Z?, although this is unnecessary for our results [17]. We
assign non-negative, independent, identically distributed
random variables to each of the edges; these represent the
energy barriers that must be surmounted in order to trav-
el between pairs of sites connected via the edges. (We as-
sume that the distribution of these variables is continuous
so that all barriers have distinct energies.) If W,, =W,
is the value assigned the edge connecting sites x and y,
then the rate to travel in either direction between x and y
is taken to scale with inverse temperature S as

7y (B)~exp[ —BW,,] .

(2) Model B —*‘site” model. Here we assign random
variables to both sites and edges of $=Z? Because we
wish to view each site as corresponding to a locally stable
state (i.e., as the minimum energy configuration within a
‘“valley”), and each edge as again corresponding to an en-
ergy barrier, the values assigned to sites and edges cannot
be identically distributed—both sites touching an edge
must have lower assigned energy values than that of the
edge itself. (As in model A, we simplify matters by
choosing each distinct edge to connect a single pair of
sites.) A simple way to implement this is to choose the
site variables independently from a single negative distri-
bution, and the edge variables independently from a sin-
gle positive distribution. However, if the model is to cor-
respond to a physical (random) potential, the distribution
for the site variables, whatever its form, would be bound-
ed from below. This is relevant to the analysis given
below. The distribution for the edge variables, of course,
need not be bounded from above.

If W, is the variable assigned to site x, then the equi-
librium probability density over sites 7, (/3) scales with 3
as

(3.1)

7 (B)~exp[ —BW,] . (3.2)
Detailed balance then requires that
T (Brgy, (BY=m,(B)r,.(B) , (3.3)

where r,, is understood as the rate to go from x to y. The
rates, satisfying Eq. (3.3), are chosen so that

Ty (B)~exp[ —B(W,, — W, )]
and

ryx (B)~exp[ —B(W,, —W,)] . (3.5)

We note that for detailed balance to hold in model 4,

(3.4)
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the probability density over sites must be site indepen-
dent; that is, model A corresponds to model B with all
energy minima degenerate. Despite the extreme simplici-
ty of model A4, it has a rich and suggestive dynamical
behavior, and we, therefore, include it in our analysis.

Our main result in I is a rigorous statement about the
order in which sites are visited for the first time, given an
arbitrary starting site. We will see later that it is easily
extended to a result about which sites are visited (or not
visited) on a given time scale, and the nature of that pro-
cess, which is of central interest in a BE treatment.

The assignment of random variables in both models
defines an ordering on the (undirected) edges of § in
which {x,y} <{x’,y’} if W,, <W,.,. That is, the bar-
riers are ordered by increasing height.

Our theorem in I, which applies to both model 4 and
model B, states the following: for any configuration of the
W,, (and W), as B— 0, the sequence in which sites are
visited, starting from some arbitrary initial site x,, con-
verges to the invasion percolation sequence with the same
initial site and the same edge ordering. (For a precise
statement of the theorem and its proof, see I. For a brief
review of invasion percolation, see the Appendix below.)

Intuitively, the above result is quite reasonable. As the
temperature is lowered, the time scales for transitions to
neighboring sites diverge from one another. With in-
creasingly high probability, the system will make a transi-
tion over the lowest barrier available to it. Although the
idea is quite simple, it has important, and heretofore
unappreciated, consequences, due to the geometry and
structure of invasion percolation. These will mostly be
discussed in the next section. First, we quote one more
result that will be central to our later discussion. This is
a nonrigorous result about the global connectivity struc-
ture of invasion percolation, discussed by the authors in
II. It says the following [3]:

For invasion percolation on the lattice Z 4 when d <8,
there is an essentially unique invasion region. That is,
given any two starting sites, their invasion regions will be
the same except for finitely many sites (with probability
one). However, when d > 8, there are infinitely many dis-
joint invasion regions. That is, given two starting sites
far from each other, their invasion regions will totally
miss each other with high probability. The asymptotic
dimension of these invasion regions in high d is four.

There is a picturesque way to view this: Let p. denote
the critical value for independent bond percolation on Z*¢
and let w, denote the energy level such that
Prob(W,, =w.)=p,. Then from any starting site the in-
vasion process, as time increases, focuses on the so-called
incipient infinite cluster at p, in the corresponding in-
dependent bond percolation problem. Once the process
finds an infinite cluster of edges with energy levels <w,,
where w,>w,, it never again crosses an edge with
W,, >wy. One can then consider the invasion process
from any point as following a ‘“path” that eventually
leads to ‘“‘the sea” at infinity. In less than eight dimen-
sions, all invasion regions from different points eventually
follow the same path to the sea. Along the way, all indi-
vidual paths merge, some sooner, some later.

However, in greater than eight dimensions, there are
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an infinite number of disjoint paths to infinity. Indeed
one should think of infinitely many distinct seas, each of
which has many tributaries, i.e., invasion regions that
flow into it, or equivalently, a (infinite) set of sites whose
invasion regions connect to it. The process flows into one
of these seas, and it will never visit any sites that connect,
via the invasion process, to any of the other seas. Because
models such as 4 and B are often used to (abstractly) de-
scribe state spaces in very high dimensions, this picture is
a crucial component in what follows.

We close this section with an important remark about
the theorem from I described above. It is well known
that the RWRE asymptotically approaches ordinary
diffusion at long times [15]. (This is also the case above
two dimensions for RWRE’s which, unlike those treated
here, do not satisfy detailed balance [16]. It need not be
the case in such models for one dimension or in detailed
balance models with sufficiently correlated environments
[14].) But our picture seems to contradict the diffusion
picture. In fact, both are consistent, because each corre-
sponds to a different method of taking the limits
time— o and 83— o, and the behavior of each model is
sensitive to this.

Previous treatments [15,16] studied the case where
temperature is fixed and time goes to infinity; in that case,
the RWRE will exhibit normal diffusive behavior. In our
picture, we first focus on a particular site y,. Suppose
that y, is the 157th site invaded by the invasion process
described earlier. Our theorem states that, as B— o, the
probability that y, is also the 157th site visited by the
RWRE converges to one. This implies that there exists a
temperature-dependent time scale—an ergodic time, so
to speak—beyond which our picture breaks down and
normal diffusion takes over (or equivalently, ergodicity is
restored) [18]. The ergodic time diverges as temperature
goes to zero. A time scale of this type is a common
feature in most systems that break ergodicity. We will
discuss this further in the following sections, but
meanwhile note the rigorous illustration, in a specific
model, of an important feature [7] of broken
ergodicity—the way in which limits are taken is crucial.

IV. BROKEN ERGODICITY IN THE RWRE

A. One-dimensional picture

We first consider the RWRE in one dimension. It will
be sufficient to consider only model A in this case, be-
cause here there is no significant qualitative difference be-
tween the two models. This is not quite true in higher di-
mensions.

For specificity, let the edge random variables, which
correspond to barriers, be chosen independently from the
positive half of a Gaussian distribution with mean zero
and variance one. Consider the behavior of the diffusing
particle for large time and low temperature. It is easy to
see that in this case, all of the assertions made in Sec. II
are correct after some initial transient time (the larger 8
is, the shorter this transient time becomes). On some ob-
servational time scale 7., the particle is trapped with
high probability between two barriers, neither of which
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are surmountable (with some prespecified probability) on
a time scale of the order of 7., If one is willing to wait
considerably longer (on a logarithmic time scale), then
the length of the line segment the particle explores is cor-
respondingly larger, surrounded at each end by suitably
large barriers. It is not hard to show that these grow in
the manner specified in Refs. [7] and [11]: AF . ~InTg,.

If one were to watch a greatly speeded up movie of the
particle motion, it would look something like the follow-
ing. After diffusing to the right (say) some distance, the
particle encounters a barrier significantly larger (com-
pared to 1/B) than any it has previously crossed. The
particle is effectively reflected to the left, where it under-
goes a net diffusive motion until it encounters a new bar-
rier significantly larger than any previous ones, including
the original reflecting barrier. (Prior to this, however, it
may have encountered barriers smaller than the first
reflecting barrier but larger than any others and subse-
quently have bounced back and forth a number of times.)
The particle “‘reflects” off this barrier and begins a net
diffusive motion to the right. Eventually, well to the
right of the first reflecting barrier, it encounters a new
barrier of yet greater magnitude than any previous ones,
which reflects it back to the left, and so on. Informally,
the process resembles a game of diffusive ping-pong with
asymmetrically receding paddles.

In two and higher dimensions, the picture changes
dramatically. We will see that in both models 4 and B,
several of the standard BE assumptions break down.
Among the most important of these is that as time in-
creases, while components grow larger, they do not con-
tain previously visited portions of state space. Perhaps
more surprisingly, in model A4 the confining barriers (i.e.,
outlets, see below) do not increase with time; they instead
decrease, asymptotically approaching a constant from
above. In model B, a constant barrier value is also ap-
proached (although not necessarily monotonically) [19].
In neither case do the barriers grow logarithmically with
time. In order to see where these surprising features
come from, we return to a more extensive discussion of
invasion percolation before examining the models.

B. Ponds and outlets

We briefly digress from our discussion of broken ergo-
dicity in the RWRE to examine the process whereby in-
vasion percolation “finds a path” to infinity. In accor-
dance with our theorem proved in I, this will be
equivalent to the behavior of the diffusing particle in the
RWRE under an appropriate range of temperature and
time scale. The picture presented in this section holds ir-
respective of whether there is one or infinitely many dis-
joint invasion regions.

We first present the standard argument that connects
the asymptotic geometry of the invasion region to that of
the incipient infinite cluster at p, in the corresponding in-
dependent percolation problem. (See the Appendix.) We
consider bond percolation on Z¢ in both cases. Hereafter
the term ““invasion region” should be understood to mean
“invasion region starting from some arbitrarily chosen in-
itial point x,.” As in the Appendix, we can and do
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confine ourselves to the case where the bond, or edge,
variables are chosen independently from the uniform dis-
tribution on [0,1].

Given x,, and a configuration of the bond variables,
there exists a unique invasion route to infinity. Consider
all bonds whose values (i.e., magnitudes of assigned ran-
dom variables) are smaller than some p;>p.. By
correspondence with the associated independent bond
percolation problem, these comprise a unique infinite
cluster, in addition to finite clusters of varying sizes [20].
Therefore, once the invasion process reaches any of the
bonds within this infinite cluster, it will never again cross
any bond whose value is greater than p .

Consider next all bonds whose values are less than
some p,, where p. <p, <p;. These too form a unique
infinite cluster that is a subset of the first, larger one.
When the invasion process reaches any of the bonds
within this newer infinite cluster, it will never again cross
any bonds greater than p,. It is easy to see that, as the
process continues, the invasion region will “focus down”
to infinite clusters of increasingly smaller maximum bond
value, and will asymptotically converge to the incipient
infinite cluster of the independent bond percolation prob-
lem at p,_.

It is important to note that the “incipient infinite clus-
ter” is not an infinite cluster at all (that is, there is no per-
colation at p.), but rather consists of a sequence of in-
creasingly larger but disconnected clusters. To visualize
this, consider a simulation of independent bond percola-
tion when p, the probability that a bond is occt;pied,
equals p.. If one looks at a finite cube of volume L¥, one
will, when L is large enough, indeed see that the largest
cluster of occupied bonds has linear extent of order L.
Suppose one now increases L dramatically. Again the
largest cluster will stretch across much of the length of
the box, but it may not contain the first cluster, which in
fact is finite (see Fig. 2). At p,, there are no infinite clus-
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FIG. 2. A sketch of the so-called “incipient infinite cluster,”
which is not an infinite cluster at all but rather a sequence of
infinitely many disjoint finite clusters. In the figure, the largest
cluster seen in window W; is (most of) C; for i=1 or 2. C, and
C, are both finite.
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ters; nevertheless, any large but finite box will have a
cluster of comparable linear dimension. This sequence of
increasingly large but finite clusters may be thought of as
the incipient infinite cluster. It should be noted that
there are alternate constructions [21,22] that yield infinite
clusters different than, but closely related to, the above
notion of incipient infinite cluster.

Let us now examine more closely how the process of
invasion occurs. We utilize here a construction of Ham-
mersley [23] which, although it predated invasion per-
colation, seems tailormade for its analysis. (Indeed, a
modified construction can be used to analyze [24] ver-
sions of invasion percolation with trapping.) Because x,
is arbitrary, the process will generally invade some set of
relatively smaller-valued bonds before it has to invade a
relatively larger one to make its way toward infinity. Pic-
turesquely, the process is stranded on a pond, and has to
invade a relatively high outlet before it can escape. The
outlet corresponds to the bond whose value is larger than
that of all others within the pond, but smaller than all
others on the perimeter of the pond. It is furthermore
crucial to note two things: first, that this first outlet will
be the bond of largest value that the process will ever cross,
and second, that once this outlet is crossed, the process
will not return to the first pond [25]. The significance of
this “diode effect” will be discussed below.

After crossing the first outlet, the process will find it-
self on a second pond, and must invade an outlet of small-
er value than the first one. In this way it invades a se-
quence of successively smaller outlets (with bond values
larger than but tending toward p.) on its way to the sea
(see Fig. 3). The general trend is for the ponds to grow
successively larger, but this need not be true monotoni-
cally.

Ponds and outlets can be defined precisely; we give two

FIG. 3. A rough sketch of the “ponds-and-outlets” picture il-
lustrating the diode effect. The first pond contains the starting
site xo. Arrows indicate the large-scale direction of motion;
once the process leaves a given pond, it does not return. The
values of the b, decrease as n increases; b, controls the height
of the minimal barriers confining the system to pond n, as de-
scribed in the text.
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alternative definitions here. In the first, consider all pos-
sible paths to infinity from the starting point x,. Each
such path 7 will contain some bond of maximum value;
call it bp. The first “outlet” is then the bond b* of
minimum value from the set {bp}. The first “pond” is
the finite cluster connected to x, consisting of all bonds
whose values are strictly less than that of 5*. The second
pond and outlet can be found using the same procedure
from the starting point x,;, where x, is the site that
touches b* and is outside the first pond. This procedure
can be repeated indefinitely to find ponds and outlets of
any order.

The second definition uses an alternative procedure.
Starting from x,, one considers the finite cluster connect-
ed to x, which consists of all bonds with values less than
P =p.. One then raises p in a continuous manner, caus-
ing the cluster connected to x, to grow. At some sharp
value of p (depending on x,) the cluster becomes infinite;
it is not hard to see that there will be a single bond con-
necting the (previously finite) cluster containing x, with
infinity. This bond is the first outlet, and all bonds in the
interior finite cluster comprise the first pond.

We now return to the situation of a random walk in a
strongly inhomogeneous environment, and apply these
ideas and results to see how the process evolves.

C. Time evolution of a random walk
in a random environment

We now examine these results within the context of
broken ergodicity. An immediate conclusion, which ap-
plies both to models 4 and B, is that it is useful to
redefine the notion of ‘“component.” While the conven-
tional definition (see Sec. II) can of course be applied
here, we propose an alternative characterization which
we suggest may be more useful for models 4 and B. We
propose here two kinds of components—one global and
one local, each of which reflects the natural structure of
the model dynamics as uncovered by our analysis. The
local type is similar to the usual component in several
respects, but the global type is markedly different. In
both cases, however, there are important differences from
conventional components, to be described below. We be-
gin by introducing the notion of a global component.

The global components correspond to the invasion re-
gions. Recall that below eight dimensions, there exists a
unique (asymptotic) invasion region, while above eight,
there exist many. Because any state space of interest will
be high dimensional, we hereafter restrict ourselves to
this case. Therefore, many disjoint invasion regions exist,
and which one a diffusing “particle” (corresponding to
the state of the system) finds itself in depends on the
starting point (i.e., the initial configuration of the system).
As long as the time is less than the ergodic time, defined
above, the system is confined to a single one of these com-
ponents, and will therefore not visit states corresponding
to any of the others. These components differ in two im-
portant ways from the usual kind of component:

(1) They are intrinsic to the system itself, and are not
defined with respect to any observational time scale.
However, it is important to note that, at fixed tempera-
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ture, there is a cutoff time scale above which the
confinement mechanism breaks down. There is no ““abso-
lute” confinement; all barriers are finite.

(2) They are infinite in extent.

We showed in II that the dimension of the invasion re-
gion is four in high spatial dimension [3]. This should be
contrasted with the dimension of ordinary Brownian
motion, which is two; as long as the confinement, or in-
vasion, mechanism dominates the dynamics, the density
of sites visited by the walker is higher than when ordi-
nary, free diffusion takes over. Some models of random
walks in state space [26] connect this type of behavior
with slower than exponential relaxation, but we will not
pursue the matter here.

How long does the confinement mechanism hold? Be-
cause the various transitions occur on exponentially
different time scales, it is more fruitful to estimate the
number of sites visited during the confinement period,
rather than the actual time. A very rough argument sug-
gests that the former will scale as e®?, where a is a con-
stant depending on the model chosen and form of the dis-
tribution. We will not determine a below—the exponen-
tial dependence on 3 is the relevant conclusion.

Perhaps what is most surprising about the above pic-
ture is that, as long as the confinement mechanism holds
and the system breaks ergodicity, the evolution of the
system (in terms of states visited) is largely deterministic,
depending only on the starting point. Of course, the par-
ticle will still diffuse among the states allowed by the
above confinement mechanism, but it does so in a manner
that again differs considerably from all previous pictures
of which we are aware. In order to see how this occurs,
we turn to a discussion of each of our specific models.

1. Model A

We have already seen how the idea of components, as
determined by observational time scales, must be
modified in these models; they are replaced by the notion
of disjoint invasion percolation regions. But within each
of these global components, we retain considerable struc-
ture in the form of ponds and outlets. These play an im-
portant role in the time evolution of the system, and cor-
respond more closely to the conventional idea of com-
ponents. However, some important differences exist here
also:

(1) In conventional BE, the system, as it diffuses in
state space, returns infinitely often to the same region of
state space within which it was confined at earlier times.
The opposite is true here—once the system leaves a
pond, it never returns. There is a type of “diode effect,”
where, on the scale of regions the size of ponds, the walk-
er always moves forward, never backward (see Fig. 3).
Some possible experimental manifestations of this will be
discussed in Sec. IV.

This diode effect is quite different from the nonreturn
of ordinary random walks. For example, in d =2, the
diode effect remains valid even though ordinary random
walks are recurrent. For large d, the invasion region di-
mension is fwice that of an ordinary random walk, as
mentioned above.
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(2) In conventional BE, the system must surmount in-
creasingly high barriers as time progresses. The opposite
again holds here—the barriers that confine the system
(i.e., the outlets) diminish steadily as time increases. The
landscape through which the diffusing system travels be-
comes increasingly flat. (The particle often sees many
high peaks in its vicinity, but it avoids them.) This is true
in all dimensions greater than one.

In regard to (2), it is important to consider the follow-
ing point. Because entropy (and presumably entropy bar-
riers) plays an important role in the physics of disordered
systems, it might be argued that there is still a large en-
tropy barrier to find the outlet that leads off a pond, and
that this barrier increases with time. While the typical
size of ponds undoubtedly increases with time, it does not
appear to be the case that entropy barriers are playing a
significant role.

In fact, consider the system immediately after it has es-
caped the nth pond. We argue here that most of the time
expended up to that point was used in getting fo the pond
in the first place. Finding the outlet on any pond is not a
needle-in-the-haystack problem; the system is not
wandering around aimlessly in state space, eventually
finding the outlet by remote chance. The dynamics of the
invasion percolation mechanism restrict the system to a
particular pond at any time, and the time scale for
confinement within that pond is simply exp[BW,’ ], where
Wy is the value assigned to the outlet for that pond. Dur-
ing this time the process thermalizes within the pond.

For entropy effects to counteract the decreasing values
of W as n increases, it would seem to require exponen-
tially increasing pond size, whereas pond size almost cer-
tainly increases much more moderately, probably as a
power law. We conclude that for model 4 (and, as we
will see, for model B also) the picture shown in Fig. 1 is a
purely one-dimensional picture. In any higher dimension
(irrespective of whether there are one or many global
components), the “water level” does not rise as time in-
creases at fixed temperature (or temperature increases at
fixed time). Viewed from x,, the water level initially
rises, but then stays forever fixed, because it finds a path
to the “sea” (i.e., to infinity), into which it empties. Any
additional water poured in simply escapes to infinity.

2. Model B

Model B is more satisfactory than A in that it corre-
sponds to a system with nondegenerate states. However,
the only difference with model A4 in the BE context is in
point (2) above. Here again, the height of the confining
barrier, or outlet, is declining towards a limit w,, corre-
sponding to p, in the independent percolation model.
However, the energy of the lowest “valley”” within a pond
generally becomes more negative as time progresses (and
the system explores larger ponds), asymptotically (but
slowly) approaching the minimum of the distribution; call
it w,,;,. Therefore, the barriers that the system must sur-
mount to escape successive ponds asymptotically ap-
proach w, —w,;, [27].

V. DISCUSSION AND CONCLUSIONS
A. Hierarchies

In all cases most of the predictions that follow from a
BE viewpoint remain valid. For example, the idea of
components nicely describes experiments on spin glasses
[28—30] wherein the system displays reversible behavior
when temperature is first lowered, then raised, but ir-
reversible behavior when it is first raised, then lowered.
(See also Ref. [31], which describes a similar effect within
the context of aging of spin glasses.) That can be viewed
within the context of hierarchically nested components
[7,10,12,31,32]. However, this irreversibility signature
easily arises in our models also, and in fact it is a conse-
quence of a very wide variety of models with inhomo-
geneous energy landscapes in state space.

To see how it arises in our picture, simply consider
some time scale at which the system can be found on a
particular pond. If the temperature is lowered, the sys-
tem remains confined to the pond (on the same time
scale). When the temperature is then raised, it merely re-
stores the original situation, so the observed behavior ap-
pears reversible. If this procedure is done in the opposite
order, however, the system can diffuse quickly to a
different pond (or even to a different global component al-
together, if the temperature is raised sufficiently). Lower-
ing the temperature leaves the system in a different region
of state space, leading to the observation of irreversibili-
ty.
We now address the question of whether our picture
displays any kind of hierarchical behavior. We examine
levels of organization on three different scales, with very
different hierarchical natures. First, consider the dynam-
ics on the scale of a single pond (i.e., a local component).
Here the hierarchical structure is essentially the same as
in the usual picture of BE [7]; e.g., as described above,
one can think of confinement within a subset of the pond
upon lowering temperature at a fixed time scale.

The largest scale is that on which different global com-
ponents can be seen. On this scale, we have not found
any evidence of a hierarchical structure in the relation-
ships among these components.

Between the smallest and largest of the three scales,
there exists an intermediate scale that does have a
hierarchical structure, but of a somewhat novel type.
This is the scale that concerns the transitions between
different ponds within a single global component. Here
there is a definite tree graph structure, each of whose
edges corresponds to a channel leading from a pond to
the next pond entered by the random walk. This tree
graph corresponds to a coarse graining of the invasion
structure: the individual ponds are treated as single sites,
and the edges are directed in the direction corresponding
to the previously discussed diode effect. Each pond leads
to a unique next pond, but many earlier ponds can lead
(via different channels) to the same pond.

Although (on the scale of ponds) the time evolution
starting from a given site is linear (since there is only one
path to infinity from any site) the overall structure is
branched. That is, two walks starting from different
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ponds will for a time evolve along disjoint paths, but will
eventually merge. It is interesting that this tree structure
emerges naturally from our dynamics; the models them-
selves (lattices on Z¢ with random site or bond energies)
have no a priori hierarchical structure. The tree struc-
ture that emerges does have a feature that sets it apart
from the type usually discussed: the structure itself is
non-nested, and once the system passes through a “diode
gate,” it cannot return. Moreover, in dimensions higher
than eight, there are an infinite number of these hierar-
chies existing in parallel, i.e., one for each global com-
ponent. We discuss the possible relevance of our picture
for several experiments below.

B. Brief remarks on some selected experiments

There may be an experimental way of distinguishing
between the conventional, hierarchically nested com-
ponent picture, and the outlet-and-pond picture for a par-
ticular system. Suppose that the temperature is raised by
only a small amount. It is reasonable to expect that the
system cannot diffuse far on relatively short time scales,
so that if the temperature is then restored and the experi-
menter waits, the system may eventually display earlier
behavior, particularly if a nested picture applies. (In
terms of going up or down a hierarchical tree, this would
be equivalent to going up only one or two levels; so after
some waiting period, the system has some reasonable
probability of rediscovering its original state.) This prob-
ability would be far smaller if the system is diffusing from
pond to pond, with little or no prospect of returning to
those visited earlier.

An experiment in a similar spirit was performed on
Ag:Mn spin glasses [30], where magnetization of zero-
field-cooled samples was measured after application of an
external field. Turning on a magnetic field was assumed
to “randomize” the energy surface; in the context of our
model B, for example, it might correspond to reassigning
values to the site and bond variables, thereby beginning a
new diffusion process [33].

It was hypothesized that the change in the energy sur-
face with field would take place continuously, so that if
the external dc field were changed by a very small
amount, a reversible change in magnetization would also
be seen. This was not observed, however, even for the
smallest applied fields ( ~40 mOe); the magnetization al-
ways displayed an irreversible drift governed by a charac-
teristic quasilogarithmic time dependence [28,30,34,35].
The explanation given was that any field, no matter how
small, completely “scrambles” the energy surface; but a
simpler explanation might be that the surface is largely
unchanged, and one is simply observing the diode effect
discussed earlier [36].

It is also of interest to note that in the irreversibility
signature of zero-field-cooled spin glasses discussed in
several papers [28-30], the magnetization appears to
remain constant when temperature is first lowered, then
raised, in nonzero field. This does not seem consistent
with Fig. 1, where if the system is at temperature T, the
magnetization is an average over the states contained
within B. Upon lowering the temperature to 74, which

confines the system to the smaller region A of state space,
it seems reasonable to expect the magnetization to
change; but this is not observed. Although at first glance
the same arguments might seem to imply a change in
magnetization in the invasion picture, due to confinement
to a subset of a pond upon lowering of the temperature,
we suggest that this is not the case. This is simply a
consequence of the fact that the pond size is slowly grow-
ing, so that a typical pond is small enough to preclude a
large variation in the macroscopic characteristics of its
subcomponents; in contrast, components in the standard
BE picture (while finite) are unrestricted in size.

We now turn to a brief discussion of aging, on which
there has been considerable recent work. (For a recent
review of the experimental situation, see Vincent,
Hamann, and Ocio in Ref. [37]). A number of recent pa-
pers [38-41] have provided a detailed comparison of
theory with experiment, using ideas from Parisi’s solution
of the infinite-ranged spin glass model [42]. There are at
least three points of contact between our approach and
that used in these papers. The first of these concerns the
underlying tree structure for low-lying states, which is
used explicitly or implicitly in the above references. As
we have noted above, there is an emergent tree structure
in our picture, which can be used as a starting point for
any analysis of aging similar to that used in these papers.
We note that in our approach, the tree structure is a nat-
ural consequence of the dynamics of a finite-dimensional
system with many metastable states.

The second and third points of contact are related to
the analysis of lifetime distributions, such as in Ref. [38].
An important first step in that analysis is the existence of
a constant “reference level” f, corresponding to the tops
of barriers (see Fig. 1 in that paper). Our analysis
clarifies the origin of this reference level—it is the w, of
model B in Sec. IVC, and is, therefore, indeed a
percolation-related phenomenon as suggested by
Bouchaud [38]. In that same paper, the existence of an
fo is combined with information on the distribution of
energies of low-lying states to obtain an exponential dis-
tribution for barrier heights. This information is ob-
tained there from Parisi’s solution. In this paper, we pri-
marily explored properties that (unlike lifetimes) do not
depend on specific information on energy distributions.
However, if one took an appropriate distribution, un-
bounded from below, for the site energies in model B, one
should then obtain the power-law distributions arrived at
in those analyses.

C. Restoration of ergodicity

Our result, that the dynamics of many RWRE models
follow that of invasion percolation, is sensitive to the
manner in which the limits 7—0 and t— « are taken.
The result is rigorous (for A, B, and presumably related
models) when time diverges appropriately as temperature
goes to zero [2]. It is also rigorously known that, when
time goes to infinity for fixed temperature, the RWRE
tends toward ordinary diffusion (in the sense that the
mean square displacement scales linearly with time [15].
Either situation can be (and often is) realized experimen-
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tally, but because our result breaks down in the second
case, we examine this situation a little more closely here.

How should we expect these models to behave when
temperature is fixed (at some value small compared to the
majority of barrier heights) and time increases? As dis-
cussed earlier, there will be an ergodic time scale at
which the system is likely to escape the global component
(invasion region) in which it finds itself. Beyond this time
scale we expect ordinary diffusive behavior, but of a rath-
er funny sort: the system will mostly hop from com-
ponent to component on the ergodic time scale, but after
it finds itself in a new component, it stays there roughly
for another ergodic time. So on shorter time scales, one
will find the system within a global component; on longer
time scales, it diffuses between components. Unless one is
examining the system on time scales extremely large com-
pared to Teyoqic (Often well beyond the reach of laboratory
time scales), one will observe the basic picture described
above.

One can also conceive of a “pre-ergodic” time scale,
beyond which the system remains within its initial global
component, but skips some ponds and/or reshuffles the
order of pond hopping inside that component. It is not
clear whether this time scale is very different from 7.goq;c,
considering that a non-negligible fraction of barriers that
confine the system to a global component are not
significantly larger than those within the component it-
self. One can envision other models, however, where
these time scales may be considerably far apart.

D. Further remarks on time scales

In addition to T..4ic, an important role is played by
the time scale 7,,,,; When the first outlet is reached. Let
W* denote the height of this “highest barrier to the sea.”
In model A4, for temperatures T << W*, 1., scales like
exp[BW™]. For t>>7, 4, diffusion has taken over
(with ergodicity restored) and the invasion picture is not
valid, while for ¢ <<, the invasion picture is essential-
ly the same as that of conventional BE. The novelty of
the invasion picture (with its diode effect, decreasing bar-
riers to the sea, etc.) is thus restricted to times between
Toutlet and Tergodic*

Unlike the case of Tq04ic, the nature of the scaling con-
stant W* for 7, is known exactly [23]. For a given
starting point x,, W* depends on the configuration of
{W,,}. Its distribution (inherited from that of { W,,}) is
given by the simple formula,

Prob(W* <p)=0,(p) , (5.1

where 6,(p) is the usual order parameter (i.e., the per-
colating network density) for independent bond percola-
tion on Z¢ with bond density p. In high dimensions, W*
would typically be of the same order as the critical value
p, [whichis 1/(2d —1)+0(1/d?)].

Of course, the invasion picture is exact only in the limit
T—0 [2]. For fixed small T, the random walk order of
visitation may differ from the invasion order for pairs of
bonds whose ny values differ by O(T). Nevertheless,
the global structure of the invasion should be matched

for ¢ below 7 rgogic-
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E. How general is this picture?

While there is a good deal of indirect evidence that en-
ergy surfaces in glasses, spin glasses, and other disordered
systems are rugged (in the sense of having many metasta-
ble states of varying depths surrounded by barriers of
varying heights [43] there is very little firm knowledge
about the detailed structure of these landscapes. Certain-
ly the uncorrelated landscapes discussed here are too sim-
ple; the real issue is how much our picture is altered by
correlations in realistic landscapes (see also Ref. [17]).
We cannot answer this question definitively. However, it
is suggestive that aspects of the conventional picture
emerge in the one-dimensional case and disappear in
higher dimensions, and we are willing to speculate that
the essential features we discuss above are more robust
than our simple models may indicate.

The above analysis implies that much of the intuition
utilized in BE studies of disordered systems is based on a
strictly one-dimensional picture that recurs throughout
the literature. This is the well-known diagram of a rough
surface as a function of some abstract configurational
coordinate. (See Fig. 1; also Fig. 2 in Ref. [44].) While all
workers in this subject are well aware that the real pic-
ture is many dimensional, that realization has never, to
our knowledge, been effectively utilized.

It seems reasonable to conjecture that the basic picture
of invasion percolation described in this paper will con-
tinue to hold, perhaps in a modified form, in more realis-
tic models of actual systems. We expect in particular
that our observation that high barriers will play little role
in confining the system will hold in almost any model, for
a simple reason—while they must be surmounted in one
dimension, they can easily be gotten around in high di-
mensions. In any case, one should be aware of alternative
viewpoints and pictures, such as those described above,
and be prepared to think about experimental and numeri-
cal results in these or other alternative frameworks.

F. Summary

We have presented a picture of broken ergodicity based
on an analysis of specific models. Although the models
are simple, the analysis leads to several surprising and
novel conclusions. These include:

(1) There is a natural mechanism of ergodicity breaking
determined by the system itself and independent of the
observational time scale. That is, the global components
(and also the ponds within them) can in principle be
determined independently of the observational time scale.
This gives rise to an intrinsic ergodic time scale, below
which ergodicity is broken and above which it is restored.

(2) Within each global component, a “pond-and-outlet”
picture provides a framework for interpreting traditional
broken ergodicity. In particular, the traditional picture
is valid within each pond, where local components can be
defined with respect to observational time scale in the
usual way.

(3) Global components are infinite in extent. More-
over, our picture requires an important alteration of the
usual image of confining barriers growing proportional to
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the logarithm of the observational time scale. In our
models, confining barriers in one case decrease with time
in a natural way, and in both cases asymptotically ap-
proach a constant value.

(4) Once it surmounts a confining barrier (an “outlet”),
the system does not return to the portion of state space
previously explored. Over long times, there is a progres-
sive motion away from the starting point, replacing the
traditional version of a growing, diffusively explored
region in which the system re-explores earlier
configurations infinitely often as time goes to infinity.

Why is it important to study these systems from this
viewpoint? As Palmer correctly points out [44], we can-
not apply statistical mechanics blindly to these systems
until we characterize the broken ergodicity, and in par-
ticular it is necessary to determine the component struc-
ture. This last problem has remained in a primitive state,
and has only infrequently been tested against actual mod-
els that can be thoroughly analyzed. Our hope is that the
present analysis will led to treatments of increasingly
complex models, with a continual refining of our under-
standing of how it is that real systems break ergodicity.
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APPENDIX

Invasion percolation [45] can be defined as a process ei-
ther on edges or on sites. We discuss edges here, but an
identical description carries over to sites. Assign each
edge on a graph—make it the lattice Z 4 for
concreteness—a random variable chosen independently
from the others and from a common continuous distribu-
tion, say for specificity the uniform distribution on [0,1].
We order the edges by the values of their associated ran-
dom variables; an edge {x,y} will be said to be of lower
order than an edge {x',y'} if the random variable as-
signed to {x,y} is less than that assigned to {x’,y'}.
(Note that the distribution of the random ordering does
not depend on the specific choice of a distribution for the
edge variables.)

The invasion procedure can now be described as fol-
lows. Starting from some arbitrary initial site x,, choose
the edge of lowest order connected to it. Consider now
both sites connected by that edge, and examine all other
edges connected to them. Again, choose from among
those the edge of lowest order. One now has a cluster of
three sites; one examines all (previously unchosen) edges
connected to them, and again chooses the edge of lowest
order. Repeating this procedure ad infinitum, one gen-
erates an infinite cluster, called the invasion region of x,.
This cluster has several interesting properties; among
others, it exhibits the property of ‘“self-organized critical-
ity [46], in that the invasion region of any site asymptoti-
cally approaches the incipient infinite cluster of the asso-
ciated independent bond percolation problem [47]. That
is, the dimensionality of the invasion region far from x,
approaches the fractal dimensionality of the incipient
cluster at p, in the independent bond percolation problem
on the identical lattice. There are other interesting, and,
for our purposes, important properties of invasion per-
colation, which will be introduced as they become
relevant to our discussion.
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